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ABSTRACT

Recently, free-space detection has attracted widespread at-
tention. Most existing methods treat free-space detection as
a semantic segmentation task. In this paper, we propose a
novel approach to directly infer the boundary of the semantic
free-space from a single image. Firstly, we design a multi-
stage CNN to produce 2D belief maps with high resolution
for boundary segments of different semantic classes, such as
road boundary, vertical obstacles on road and so on. The pro-
posed CNN architecture can implicitly learn boundary struc-
ture and long-range spatial context. Then, based on the 2D
belief maps we address the semantic free-space detection as a
dynamic programming problem to ensure the spatial smooth-
ness of the predicted boundary. The experimental results on
our dataset show that our method has a convincing perfor-
mance on various quantitative metrics.

Index Terms— semantic free-space, multi-stage CNN,
dynamic programming

1. INTRODUCTION

As a crucial component in Advanced Driver Assist Systems
(ADAS), free-space detection requires a prediction of the
ground plane in a particular traffic scene, which can provide
useful information, such as latent hazardous and drivable
space, for the trajectory programming.

Free-space detection is widely considered as a seman-
tic segmentation task. Several strategies have been devel-
oped to detect a fine-grained free-space, such as occupancy
grids [1][2][3], stixel world algorithm [4][5][6][7]. Recently,
with the widespread application of fully convolutional net-
works(FCNs) [8], free-space detection can be efficiently
realized in the pixel-level without the constrains of input size.
For example, paper [9] proposed an approach with FCNs to
achieve free-space detection in the pixel-level.

However, there are still several defects of the above
methods. A common flaw is that most of these meth-
ods [10][11][12] lack the semantic information of free-space
boundary. Although these methods can detect the free-space
finely, not all detected free-space are drivable. Other meth-
ods [13][14][15][16] only segment the pixels belong to free-

Fig. 1. A free-space boundary with semantic information,
where red, green and yellow areas denote the vertical, flat and
step respectively.

space and lack the planning for the boundary of these pixels,
thus is still hard to describe the surrounding drivable situation
clearly. We aim to predict semantic free-space boundary,
which can provide useful and applicable information for tra-
jectory programming in ADAS. As shown in Fig. 1, given an
input image of a traffic scene, our model localizes a spatially
smooth boundary of free-space and segment it into several
parts semantically belonging to vertical, step and flat, which
represent road boundary (Step), vertical obstacles on road
(Vertical), and partial flat road (Flat) respectively. Step and
vertical are easier to detect owing to their clearer structures
in the traffic scene, while flat detection remains a challenging
task. To address this problem, we make use of the suffi-
cient context information in traffic scenes to provide cues and
accurately infer semantic free-space boundary in the pixel
level.

More specifically, our approach starts with a multi-stage
CNN to produce a 2D belief map with high resolution. Then
the belief map is fed into a dynamic programming algorithm,
resulting in a reasonable boundary. We also exploit a coarse-
to-fine training strategy to help the network learn to regress
free-space boundary more efficiently and accurately. The ex-
perimental results demonstrate that our approach can infer
a semantic free-space with satisfying semantic accuracy and
spatial smoothness.
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Fig. 2. The system of semantic free-space boundary detection. F0 represents the output of CNN0 Features Extractor with 1/8
input size, F1 represents a feature map of 4 times downsampling in CNN0 Features extractor.

2. OUR APPROACH

2.1. Multi-stage CNN

Overall Network: Our network for semantic free-space
boundary detection follows the architecture proposed by
[17], in which we use a simple CNN structure as our feature
extractor and a sequence of convolution-based predictors for
belief map regression. For an input image of a traffic scene,
multi-stage CNN outputs a belief map with higher spatial res-
olution, denoted as H . The overall network of our approach
is illustrated in Fig. 2.
CNN0 Features Extractor: We adopt 2× Conv (3x3x16),
2× Conv (3x3x32) and 3× MaxP (2x2) in CNN0 Feature
Extractor. The feature maps are spatially downsampled by
a factor of two for three times to ensure a rapidly-growing re-
ceptive field, resulting in a feature map with 32 channels and
1/8× size of the input image.
Low Resolution Stages (LR-Stages): LR-Stages consist of
5 stages. The configuration of the first stage CNN1 is as
follows: 3× Conv (3x3x32), Conv(1x1x4)+sigmoid and the
rest four stages are composed of CNN2 as follows: 3× Conv
(7x7x16), Conv (1x1x4)+sigmoid. Since each stage in LR-
Stages can produce a belief map, we concatenate the output
of the previous stage and feature map output by the feature
extractor (F0 in Fig. 2) as the input to the next stage. Fi-
nally, LR-Stages give a feature map with 1/8× input size and
4 channels.

The first LR-Stage regresses a belief map based on fea-
tures produced by the feature extractor, while the following
stages can improve their predictions by combining the origi-
nal feature map with the spatial context information provided
by the noisy belief map from its previous stage.
High Resolution Stages (HR-Stages): HR-Stages can pro-
mote the resolution of the belief map produced by LR-Stages.
We use 2 stages owning the same configuration as CNN2. We
upsample the output of LR-Stages and concatenate the results
with F1 (in Fig. 2) as input to HR-Stages. The HR-Stages
finally generate a belief map with 4 channels and 1/4× input
size for the free-space boundary, denoted byH . Each channel
represents background (HB), flat (HF ), vertical (HV ) and

step (HS). HR-stages can also be extended by adding more
stages and applying to higher spatial resolution.

To simplify the process of subsequent inference, we in-
tegrate HF , HV , HS into a single-channel belief map C by
adding them on channels: C = HS +HV +HF .

2.2. Semantic free-space boundary planning

Enlightened by [18], we propose a strategy to infer the se-
mantic free-space boundary with precise locating and spatial
smoothness.

For belief map C, we first store the pixels of C in
columns, like {C1, C2....CN}, in which N represents the
width of the belief map. Our task is to find the best boundary
with the greatest confidence and spatial smoothness. More
precisely, we need select a pixel from each column to form
the boundary. Mathematically, the optimization solution can
be described as follows:

(p1
∗ . . . pN

∗) = argmax
p1...pN

[

N∑
n=1

Cn(pn)

+

N∑
n=2

S(pn, pn−1)] pn ∈ {1 . . . H},

(1)

S(pn, pn−1) = α(pn − pn−1)2, (2)

where pn represents the row coordinate of a pixel in the n-th
column, M represents height of the image and Cn(pn) rep-
resents the confidence of pixel (pn, n) in C. S(pn, pn−1) is
a smoothness constraint to prevent the discontinuity of two
adjacent pixels. We use dynamic programming to solve the
above problem. Specifically, we use the following recursive
equation as:

Dn(pn) =Cn(pn) + max
pn−1

[S(pn, pn−1)

+Dn−1(pn−1)],
(3)

the programming result {p1∗...pN ∗} is obtained by the trac-
ing back algorithm in dynamic programming. For each row
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coordinate pn∗ in sequence, we use the max confidence in C
to give pixel (pn∗, n) a semantic label:

l(pn
∗, n) = argmax

d∈{S,V,F}
Hd(pn

∗, n). (4)

Additionally, the semantic information of each pixel in
{p1∗...pN ∗} can also be inferred by dynamic programming.

2.3. Training

We propose a coarse-to-fine strategy to guide the network to
incorporate large scale context information for semantic pre-
diction at first, and then turn to details for more accurate lo-
calization in the training process. To be specific, we train
our network for 160 epochs, which are equally divided into 4
phases. In each phase, we use Gaussian kernels with size β
to blur the original labels. As the training epochs increase, β
gradually decreases as {11, 9, 7, 5} at the start of each phase.

We use L2 loss in the output of each stage including HR-
stages and LR-Stages, i.e.,

L =

T∑
t=1

lt(β), (5)

where lt(β) represent the L2 distance between the predicted
belief maps and the blur labels.

3. EXPERIMENTS

3.1. Dataset and Evaluation

Dataset: We construct a dataset by ourselves to evaluate our
method. All images are captured from urban and highway
traffic scenes through a car camera. To enhance the robustness
of our dataset, we specially collect images of some adverse
conditions such as shadowed or reflective scenes.

The dataset consists of 1093 training examples and 172
test examples with 1280×720 size and RGB channels. For
each image, we roughly annotate step, flat and vertical sepa-
rately on three channels with broken lines.
Evaluation: We propose Distance Loss (DL) and Semantic
Accuracy (SA) to evaluate our approach according to bound-
ary similarity and the accuracy of semantic prediction respec-
tively.

Distance Loss is defined as the similarity between our
predicted and the labelled free-space boundary. Firstly, we
use distance transformation [19] to derive the closest dis-
tance of each pixel in the predicted boundary to the annotated
boundary. Then we sum and average the result. We use
T (pn, n) to represent the distance from the pixel (pn, n)
in the predicted boundary to the nearest pixel in the anno-
tated boundary, and the distance loss can be represented as:

DL =

[
N∑

n=1
T (pn, n)

]
/N .

Semantic Accuracy is defined as the accuracy of semantic
prediction by comparing each pixel on the predicted bound-
ary to the nearest label pixel. We use S(pn, n) to represent
whether the predicted class of the pixel (pn, n) is the same
as the class of label pixel closest to it. The semantic accu-

racy can be counted as: SA =

[
N∑

n=1
S(pn, n)

]
/N , where

S(pn, n) ∈ {0, 1}.

3.2. Setup

In training procedure, we use Adam Optimizer with the de-
fault parameter settings suggested in the paper [20]. We set
the learning rate to 0.0001 and the size of mini-batch to 2.

In prediction procedure, we experiment with 172 test-
ing examples in our dataset. Given an RGB image of size
720×1280, we scale it down to 360×640 and use it as the
network input. The network outputs a 4-channel belief map
of size 90×160 and scales it to 720×1280 for dynamic pro-
gramming to get the final result.

3.3. Quantitative evaluation results

Table 1. Performance on different structures and strategies.
DL: Distance Loss, SA: Semantic Accuracy.

DL(pixel) SA
Base 9.36 0.75

BASE+HR 7.32 0.82
BASE+CF 8.73 0.79

BASE+HR+CF 6.72 0.85

We compare our approach in terms of network structure
and training strategy on our test data. Our baseline model
(BASE) is a multi-stage CNN only with LR-Stages, and
adopts the training strategy in [17]. Besides the baseline
model, we also test the performance of coarse-to-fine (CF )
training strategy and HR-Stages (HR).

With the same configurations of other variables, we exper-
iment on our test data and average the results, which are pre-
sented in Table. 1. The application of HR-Stages and coarse-
to-fine strategy both improve the performance of the base-
line approach concerning all metrics. In addition, the benefits
of using both the HR-Stages structure and the coarse-to-fine
strategy are significant, reducing the distance loss by 2 pixels
and increasing the semantic accuracy by 10%.

We also test the benefits of HR-Stages and coarse-to-fine
strategy regarding the networks ability to fit with most of the
traffic scenes. In Fig. 3, X-axis denotes the distance loss while
Y-axis represents the proportion occupied by images of which
distance loss is lower than the threshold value corresponding
to the X-axis in the test samples. As shown in Fig. 3, with HR-
Stages the network performs better in capturing those explicit
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Fig. 3. Comparisons of different training strategies and net-
work structures on the metric of distance loss.

Fig. 4. Output of our multi-stage CNN with different se-
tups. a) Input Image; b) BASE+CF; c) BASE+HR; d)
BASE+HR+CF.

structural features, therefore resulting in more high-quality
prediction results under a strict distance loss threshold. As
the threshold increases, traffic scenes lacking clear structures
and thus difficult to plan emerges. Our coarse-to-fine train-
ing strategy helps the network raise the correct location rate
on such samples. The improvements should be attributed to
large scale context information captured in the early training
phases, which can guide the network to locate the boundary
more accurately in traffic scenes without clear structures.
Qualitative evaluations: We show an intermediate result
from our multi-stage CNN to illustrate the advantages of our
HR-Stages structure and coarse-to-fine strategy. Comparison
between Fig. 4(b) and 4(d) proves that the network with HR-
Stages localizes the boundary more precisely and results in a
belief map with higher resolution. What’s more, by compar-
ing Fig. 4(c) and 4(d), we observe that the network trained
with our coarse-to-fine strategy can better learn the boundary
structure and long-range spatial context.

Some test samples processed through dynamic program-
ming are also depicted in Fig. 5. Owing to HR-Stages and
coarse-to-fine strategy, our approach can give a semanti-
cally accurate and spatially smooth free-space boundary pre-

Fig. 5. inferential results in different traffic scenes. a) shad-
owed; b) highway with fork; c) urban; d) reflective.

Fig. 6. Some examples with poor results. a) extremely shad-
owed; b) Large area of reflection in the image.

diction. The approach also exhibits robustness in various
conditions, even on shadowed or reflective roads. How-
ever, not all traffic scenes can be well handled, due to the
lack of spatial context features in some extremely adverse
conditions. As shown in Fig. 6, our approach can only
correctly infer a few intervals of the semantic free-space
boundary in the image. There are some extra results at
https://youtu.be/FrhR4VPeg58.

4. CONCLUSION

We propose an approach to infer the semantic free-space
boundary directly. Making use of the spatial context features
of a traffic scene, multi-stage CNNs can regress a belief map
with high resolution, accurate location and semantic infor-
mation for the free-space boundary. A semantic free-space
boundary can be finally produced through dynamic program-
ming based on the belief map. Furthermore, the specially-
designed training strategy ensures an efficient learning pro-
cess. The experiments demonstrate our approach can achieve
a convincing performance on various traffic scenes. For the
future, we plan to apply our approach to image sequences to
realize the robustness in those extremely challenging scenes.
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