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Abstract—Despite the notable progress made in action recog-
nition tasks, not much work has been done in action recognition
specifically for human-robot interaction. In this paper, we deeply
explore the characteristics of the action recognition task in
interaction scenes and propose an attention-oriented multi-level
network framework to meet the need for real-time interaction.
Specifically, a Pre-Attention network is employed to roughly focus
on the interactor in the scene at low resolution firstly and then
perform fine-grained pose estimation at high resolution. The
other compact CNN receives the extracted skeleton sequence as
input for action recognition, utilizing attention-like mechanisms
to capture local spatial-temporal patterns and global semantic
information effectively. To evaluate our approach, we construct a
new action dataset specially for the recognition task in interaction
scenes. Experimental results on our dataset and high efficiency
(112 fps at 640 × 480 RGBD) on the mobile computing platform
(Nvidia Jetson AGX Xavier) demonstrate excellent applicability
of our method on action recognition in real-time human-robot
interaction.

I. INTRODUCTION AND RELATED WORK

Human action recognition has long been one of the most
popular research topics in computer vision and intelligent
robotics. Its research results are widely used in various ap-
plications such as surveillance, healthcare monitoring and
human-robot interaction [1]. In recent years, large scale video
datasets like Sports-1M [2], Kinetics [3], ActivityNet [4] and
THUMOS14 [5] are proposed, covering rich scenes and action
categories. PKU-MMD [6] and NTU RGB+D [7] further
provide multi-modality data (RGB, depth and skeleton joint
coordinates). With these datasets and the introduction of
deep learning, significant progress has been made in action
recognition [8].

However, as one of its core applications, human-robot
interaction (HRI) cannot directly benefit from such progress.
On the one hand, HRI systems are usually embedded in mobile
robot platforms which are often limited in computational
resources. Therefore, the state-of-the-art action recognition
methods [9]–[11] trained on those large-scale datasets are too
computationally intensive to adopt. On the other hand, data
collected in interaction scenes differ from those datasets for
general action recognition tasks. Thus datasets and metrics
specifically for interaction scenes are needed.

Unlike general action recognition tasks that aim to either
classify a segmented clip or classify and meanwhile temporally
localize actions from an unsegmented sequence in an offline
manner, this task intends to trigger a signal online for each
action encountered in a continuous stream. The output form of

triggered signals is similar to online action detection [12], [13]
or early event detection [14], while our task further specifies
scene and computing platform limitations. Fig. 1(a) shows an
example. Triggered signals can be directly used in HRI system
to guide robots to make instant responses.

In interaction scenes, people’s actions are mostly related to
their body movements rather than surrounding environments.
Therefore, skeleton-based action recognition methods should
be adopted, given their robustness to illumination change and
scene variation [15]. In this way, human pose estimation is
needed to extract skeleton sequences of interactors from raw
videos. In interaction scenes, irrelevant people often appear
with the interactor. Single-person pose estimators [16], [17]
fail to deal with such scenes. Most of multi-person pose
estimation methods fall into two groups: bottom-up and top-
down methods. The former [18]–[20] performs estimation for
all people in parallel, and the interactor can be determined with
extra selection modules. Yet for HRI, accurate multi-person
pose estimation (especially for irrelevant people) at high
resolution is excessive consumption of limited computational
resources. The latter [21]–[24] employs a human detector first,
and performs single-person pose estimation for the interactor.
However, selection modules based on human detection results
are tough to design, since bounding boxes lack compactness
to describe human bodies. Besides, human detectors also bring
considerable waste to some extent on encoding irrelevant
people. Compared to the methods above, applying some rough
pre-attention and quickly focusing on the interactor is more
feasible.

As for skeleton-based action recognition, spatial-temporal
patterns of human actions can be modeled by either
RNNs [25]–[28] or CNNs [28]–[31]. Recently, graph neural
network (GNNs) [32]–[35] emerges as a more natural choice
to implicitly form a hierarchical representation of the skele-
ton sequence. Despite acceptable recognition accuracy, these
methods are commonly unclear in the role of different parts of
network structures in processing information. A network with
better explainability is expected.

Considering the challenges discussed above, we propose
an attention-oriented multi-level network framework to solve
this task, as Fig. 1(b) shows. In the first level, we devise
a Pre-Attention Pose Network (PAPNet) for pose estima-
tion in an end-to-end manner. With Pre-Attention, PAPNet
roughly focuses on the interactor in complex changing scenes.
Then computation resources are concentrated on estimating
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Fig. 1. (a) The action recognition task on a continuous stream in HRI and (b) the proposed framework to solve the task. Within the duration of
each action (short delay is allowed), the algorithm is required to trigger a signal, informing the appearance of an action instance of the specific category. The
person in the scene presents to interact with the robot behind the camera sensor. The camera viewpoint is changing because of the robot’s actions to respond
to the interactor.

the interactor’s pose at high resolution accurately. In the
second level, a two-stage Attention-Guided Action Network
(AGANet) is designed for skeleton-based action recognition.
The two stages are respectively devoted to encoding spatial
pose representations and capturing temporal motion patterns.
Two kinds of attention-like mechanisms are incorporated to
strengthen the two stages by focusing on most important local
structures in the first stage and combining multi-scale temporal
motion features in the second one.

Currently, datasets in which subjects appear to interact
with a robot behind the camera sensor are still vacant. In
order to verify the effectiveness of our method and facilitate
further research on action recognition in HRI, we construct
a new multi-modality human action dataset. We name it
as AID (Action-in-Interaction Dataset) since we wish better
interaction makes robots a better aid for people’s lives. Within
the scope of our knowledge, the AID dataset is the first action
recognition dataset to collect from the simulated viewpoints
of the mobile robot in HRI. We also define a new evaluation
metric on our dataset.

We deploy the proposed framework on a mobile robot
platform embedded with Nvidia Jetson AGX Xavier for com-
puting. Real-time HRI is achieved and demonstrated in the
supplementary video. Our code and dataset will be made
publicly available later.

The major contributions of our work are summarized as
follows:

1) We specify a new action recognition task for HRI,
which requires instant responses for actions performed by the
interactor.

2) We propose an attention-oriented multi-level network
framework, in which multi-granularity attention is integrated
for different levels, towards real-time action recognition in
interaction scenes.

3) We construct a new dataset and define a new evaluation
metric on it to support further study on the action recognition
task in HRI. Our proposed method achieves superior perfor-
mance on this new dataset, with also high efficiency to meet
real-time requirements for interaction.
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Fig. 2. Structure of the proposed Pre-Attention Pose Network (PAP-
Net). 10 skeleton joints of the upper body are estimated: head (HD), neck
(NK), left/right shoulder (LS/RS), left/right elbow (LE/RE), left/right wrist
(LW/RW), and left/right hip (LH/RH).

II. PROPOSED METHOD

In the following we illustrate the two levels in the proposed
framework separately.

A. Pre-Attention Pose Network (PAPNet)

Here we propose a compact pre-attention network named
Pre-Attention Pose Network (PAPNet), as illustrated in Fig.
2. PAPNet estimates the 2D pose p2d of the interactor in
a multi-person scene from RGB color image I and depth
image D. Then given inner-parameters of the camera and
depth information, we can project 2D pose p2d back to 3D
skeleton p3d in the spatial coordinate system. According to
the actual application requirements, our task focuses on the
10 skeleton joints of the upper body, as Fig. 2 shows.

The PAPNet can be seen as a two-stage model. In the first
Pre-Attention (PA) stage, the low-resolution (224×224) RGB
color image I and depth map D are integrated as input. The
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Fig. 3. An overview of the proposed Attention-Guided Action Network (AGANet). Kernel size and stride of each conv. layer are denoted under itself
with ”k” and ”s”. The ”RB” and ”MB” indicate the residual and soft mask branch in each attention module respectively.

depth map D provides additional information for localizing
the interactor from a complex scene. PA stage outputs pixel-
wise dense attention map ma denoting the rough position of
the upper body of the interactor. Then a local ROI (Region
of Interest) suggested by the PA stage is cropped from the
original image (640×480). On the ROI, the second Pose stage
performs fine-grained single-person pose estimation at high
resolution. Both of the two stages are constructed by stacking
two hourglasses [16] with proper compression. The output
from PA stage is binarized and a minimum bounding rectangle
of the largest binary connected component is extracted for ROI
crop.

The pixel-wise attention from the PA stage is relatively
rough. Therefore, we can employ shallow network layers in the
PA stage and concentrate on local regions that are informative
for the overall action recognition task earlier. As a comparison,
top-down or bottom-up approaches spend many resources on
encoding more refined bounding boxes or joints of unrelated
people. Furthermore, the PA stage learns to exploit depth
information and extract the interactor via the network itself,
eliminating hand-designed constraints. In contrast, both top-
down and bottom-up methods need extra selection modules
for determining the interactor.

B. Attention-Guided Action Network (AGANet)
Given a sequence of skeleton joints p3d1:T in the form of

3D coordinates , we arrange it into a T × K × 3 skeleton
image. Although the sequence length T is usually much
longer than the number of joints K, we do not resize the
skeleton image to a typical image size like 224 × 224 as
most skeleton-based action recognition methods using CNNs
do [29], [30]. That’s because for interaction scenes, actions to
be encoded are usually very short in time. Resizing in that way
severely compresses the T dimension and loses discriminative
information for actions. Given the unbalanced aspect ratio of
the skeleton image, encoding spatial and temporal patterns
simultaneously with typical CNN architectures is not feasible
due to a massive gap between the receptive fields needed for
the two dimensions.

To overcome such limitations, we propose a novel network
named Attention-Guided Action Network (AGANet), with a
fully convolutional network (FCN) structure to make dense
frame-wise estimation on skeleton sequences. As shown in
Fig. 3, the proposed network is split into two stages: In
the first Space-Dominant (SD) stage, two 3 × 5 conv. layers
encode relations among skeleton joints in a short term into
local spatial-temporal feature representations. In the second
Time-Dominant (TD) stage, there are four 5× 1 conv. layers,
of which the first two perform 2× downsampling operations
meanwhile to ensure a longer time interval for subsequent
layers to observe the sequence. Long-term motion patterns
are captured in this stage owing to sufficient receptive fields
on the T dimension. Dense estimation on the T dimension
is performed at the end to regress scores st for actions in
each frame. Two attention-like mechanisms conforming to the
idea of residual attention [36] are incorporated, which will be
illustrated next.

Local Spatial-Temporal Attention (LSTA) module. In
the sequence, most actions can be distinguished according to
the movements of certain joints in specific frames without
referring to other spatial-temporal areas. To make more ef-
ficient use of computation resources and representation power
of our compact network, we propose a Local Spatial-Temporal
Attention (LSTA) module. After the first conv. layer in the
SD stage, spatial-temporal patterns in small local regions have
been extracted. As Fig. 3 shows, in the soft mask branch of the
LSTA module, one 5×1 conv. layer describes the evolutions of
each local region in dense short time intervals, hence search
for the most important local structures. Then the calculated
attention information guides the next layer in the SD stage
to focus on those key local structures while encoding larger
regions.

Global Semantic Attention (GSA) module. For dense
estimation of actions in the T dimension, high-level features
from deeper layers provide more context and more comprehen-
sive semantic category information, while low-level features
better retain frame-wise information. To combine the advan-
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tages of them, we perform frame-wise estimation on low-level
features with guidance from high-level features. Therefore,
a Global Semantic Attention (GSA) module is introduced,
as illustrated in Fig. 3. To keep the network compact, we
do not increase the depth of the soft mask branch in the
GSA module, but perform further downsampling to capture
global context information from longer time intervals instead.
After two conv. layers we squeeze the T dimension by a
combination of maximum and average pooling to attain rich
semantic information of the whole sequence. Finally, with a
1 × 1 conv. layer, high-level features are adjusted channel-
wisely to the need of guiding low-level features for feature
selection before final estimation.

C. Training Procedure

Loss function for PAPNet. Following the idea of interme-
diate supervision [16], [17], the model is trained to repeatedly
produce the confidence maps for the locations of Pre-Attention
in the PA stage and joints in the Pose stage. The costs on
the output after each hourglass module are added together,
resulting in the final loss, i.e.,

LA =

2∑
t=1

||m̂a
t −ma

t ||22, (1)

LP =

2∑
t=1

K∑
k=1

||m̂p
t,k −mp

t,k||
2
2, (2)

where m̂ denotes the groundtruth, t and k index hourglass
modules and joints respectively.

Loss function for AGANet. To allow for batch learn-
ing, we evenly sample fixed-length subsequences from each
complete sequence to form our training set. Dense frame-wise
category labels are generated according to original annotations,
in which category and start and end time of each action
instance are annotated. Frame-wise cross entropy (CE) loss
is minimized for binary classification on each category, i.e.,

LAction =
1

T

T∑
t=1

C∑
c=1

CE(ŝt,c, st,c), (3)

where ŝ denotes the groundtruth, t and c index frames and
action categories respectively.

Data augmentation in training AGANet. The action
recognition in interaction scenes must maintain the invariance
to the camera viewpoint. However, even a small part of the
space of camera viewpoint changes can never be covered
during data collection. To enrich diversity in the training set
and avoid overfitting, we jointly use three data augmentation
strategies. For each fixed-length 3D skeleton subsequence in
the training set, a) rot: randomly rotate the whole subse-
quence within 5 in the 3D camera coordinate system; b)
dist: randomly adjust the distance from the skeletons to the
camera origin by no more than 5%; c) gt: randomly adjust the
annotated start and end time of action instances by no more
than 5% of the time length of action instances.
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Fig. 4. (a) Visualization and (b) parameter configurations of post-
processing.

Among the three strategies above, rot and dist aim to
improve the robustness of recognition to the movements of
the camera sensor. Meanwhile, gt is committed to reducing the
bias among perceptions of different people during annotating.
In this way, transition boundaries between different actions are
statistically smoothed and the network can learn to focus on
the process of actions. In every epoch, new data augmentation
parameters are randomly generated for each sample.

D. Prediction and Post-Processing

During prediction, we firstly extract the interactor’s 3D
skeleton frame-wisely from a continuous RGBD video stream.
Then we slide fixed-length temporal windows on the skeleton
data stream to generate skeleton images and input them into
our AGANet to obtain frame-wise category scores. Since
overlaps among different temporal windows exist, we choose
the scores from the middle part of each window to form
final prediction results on the stream. Frames without category
scores larger than the set threshold are considered as contain-
ing no defined actions. For other frames, the action category
with the largest score is granted in each frame.

During post-processing, an accumulator and a trigger are
independently set for each action category. In the sequence, the
continuous appearance of a certain action category increases
its accumulator score. When the accumulator score exceeds
the trigger threshold, a signal denoting an action instance
is triggered. The trigger state is also changed from 0 to
1 to avoid being triggered repeatedly by the same action
instance. When that category no longer appears continuously,
its accumulator score gradually decreases and drops below
the trigger threshold. The trigger state is reset to 0 again
and waits to be triggered by the next action instance of this
category. In the accumulator, lower and upper limits ensure the
sensitivity, i.e., the accumulator score can rapidly exceed the
trigger threshold when the action appears continuously and
drop below it otherwise. Fig. 4(a) visualizes an example of
the accumulator score and trigger state of a certain action
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category influenced by frame-wise estimation over a while in
the sequence. The trigger threshold and upper limit for each
category are independently set based on minimum durations
of that category of actions, as shown in Fig. 4(b).

III. EXPERIMENTS

A. Dataset and Evaluation Metrics

Action-in-Interaction Dataset (AID). This is our newly
collected dataset for the action recognition task in HRI. Our
dataset is captured via the Intel RealSense D435 camera, which
can record RGB color and depth images synchronously. In
interaction scenes, a robot platform with interaction system
is hardly stationary. So we continuously move the camera
sensor while collecting data to simulate the actual situation,
leading to video sequences with changing camera viewpoints
in the dataset. We define 10 action categories that are common
and conveniently performable in HRI scenes: raising left/right
hand (RL/RR), making pause gesture (MP), swinging left/right
hand (SL/SR), pushing forward with left/right hand (PL/PR),
circling with left/right hand (CL/CR), and crossing hands
(CH). We invite 20 subjects and collect 5 ∼ 6 video sequences
for each of them. Each sequence lasts about 60 ∼ 80 seconds
(recording with 30 fps) and mostly contains 10 action instances
(each defined action category appears once). Both RGB color
and depth images are recorded with 640×480 resolution. The
total scale of the dataset is 205,138 frames from 102 videos,
with 1031 annotated action instances.

Cross-subject evaluation. We follow the commonly-used
cross-subject evaluation [7] to split our subjects into training
and testing groups, composed of 14 and 6 subjects respectively.
There are 71 videos in the training set and 31 videos in the
test set. Such a split setup aims to test the robustness to
intra-category variations among different interactors, like body
shape and behavioral habit, etc.

Metrics. We adopt the calibrated average precision
(cAP ) [12] to evaluate frame-wise estimation before post-
processing in Sec. II.D. However, triggered signals are the
directly expected output form by the task. Moreover, our
post-processing achieves the same function of suppressing
false positive frame-wise predictions as cAP . Therefore, we
propose a trigger-based metric to evaluate triggered signals.

For each video, the category and trigger time of triggered
action instances are recorded. Based on the idea that an action
instance should be discovered between its start and proper
delay after its end, we delay the end time of action instances by
20% of their durations in the groundtruth annotations during
evaluation. Then we match a triggered action instance to an
annotated one with the same category and count it as a true
positive (TP ) prediction if the trigger time of the former is
within the extended duration of the latter. Triggered actions
and annotated actions not successfully matched are denoted
as false positive (FP ) and false negative (FN ) predictions
respectively. The score threshold for category assignment
during prediction can be varied to evaluate the trigger-based
average precision (APtrig). We also set the score threshold

(a)

(b)

(c)

(d)

Fig. 5. Examples of Pre-Attention and pose estimation results from
PAPNet. Local regions for Pre-Attention are masked out from the background.

to 0.4 to calculate trigger-based precision (Ptrig) and recall
(Rtrig).

B. Implementation Details

PAPNet and AGANet are independently trained on an
NVIDIA Tesla M40 GPU. Although PAPNet can be optimized
end-to-end, we find it more efficient to train two stages
separately. Training samples for the Pose stage are cropped
from original images according to annotated bounding boxes,
with random scaling and rotation for augmentation. Such a
strategy prevents the Pose stage from being overwhelmed by
negative samples attained from the PA stage in the initial phase
of training. 2000 RGB+D frames are extracted from our AID
dataset and annotated with upper-body bounding boxes for
training the PA stage. Joints of interactors are also annotated
in these 2000 frames. Along with 3000 images selected from
the MS-COCO dataset [37], a total of 5000 RGB images are
used for training the Pose stage.

During the training of our AGANet, the model is optimized
using Adam [38] with the default parameter settings. We
train for 60 epochs with a batch size of 256. For every
epoch, subsequences with length T = 100 are sampled with
a stride of 5 frames from each complete sequence. A whole
training process costs only 7 ∼ 8 minutes for AGANet with
111K parameters. During prediction, the temporal window
with length T = 100 is slided with a stride of 20 frames.
All the following experiments conform to setups above.

C. Comparison with Other Methods

Efficiency. The running speed of the whole network
framework mostly depends on the pose estimation level. To
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evaluate the efficiency of our method, we compare our PAPNet
with CPN [23] and OpenPose [20]. These two methods stand
for the latest and most effective methods for multi-person
pose estimation, including top-down (CPN) and bottom-up
(OpenPose) ones. Some adjustments are made based on their
original network structures: For v1, we properly compress the
network size, considering that only the joints of the upper body
need to be estimated. After pre-training on the MS-COCO
dataset [37], we finetune them on our AID dataset. For v2,
we make further compression to focus on pose estimation in
interaction scenes while losing some generality to other scenes,
and apply the same training data as our PAPNet.

As shown in Table I, our PAPNet achieves the best effi-
ciency far ahead (8.3 × smaller and 2.4 × faster than the 2nd
place) and competitive accuracy on a subset of 226 test images,
with also outputs at higher resolution from the Pose stage.
Fig. 5 further shows the effects of Pre-Attention: The model
manages to adapt attention regions to human poses in diverse
scenes, with robustness to position and scale changes of
interactors caused by camera viewpoint movements (especially
in Fig. 5(a),(b)), and eliminate interference from irrelevant
people (in Fig. 5(c),(d)).

TABLE I
EFFICIENCY AND ACCURACY OF DIFFERENT METHODS FOR THE

INTERACTOR’S POSE ESTIMATION ON THE AID DATASET. THE FPS ARE
TESTED ON NVIDIA JETSON AGX XAVIER.

model parameters fps PCK@0.15
CPN v1 [23] 46.0M 33 97.31
CPN v2 [23] 27.0M 47 96.56

OpenPose v1 [20] 42.0M 15 96.70
OpenPose v2 [20] 11.6M 43 95.73

PAPNet 1.4M 112 96.00

Recognition accuracy. We select several methods to
compare with AGANet, based on skeleton data extracted by
our PAPNet. These methods cover most of the popular network
designs for skeleton-based action recognition: (a) MTLN [30],
a VGG-like deep CNN, (b) JCR-RNN [26] using LSTM, (c)
Beyond joints [27] using biLSTM, and (d) ST-GCN [32] with
graph convolutions. Their detailed parameter configurations
are adjusted to the size of AID dataset, and sizes of adjusted
models are comparable to base-AGANet. Prediction heads
of them are also adjusted for dense frame-wise estimation.
Input sequences are arranged as skeleton images mentioned
in Sec II. B, without any hand-crafted geometric features
for a fair comparison. These networks are all trained from
scratch on AID dataset. None of them import any attention-like
mechanism. Therefore, we also introduce base-AGANet, the
basic architecture of AGANet without LSTA or GSA modules.

Table II shows the evaluation results. The 2nd lowest
accuracy by MTLN in the competition proves simple CNN
to be unsuitable for our task. As discussed in Sec. II. B,
resizing a skeleton image to typical image size results in
deformations, and make some of the actions unrecognizable.
The 9.91 cAP and 8.49 APtrig gap between JCR-RNN and
Beyond joints shows the necessity of backward information.

UD

RL

RR

MP

SL

SR

PL

PR

CL

CR

CH

UD RL RR MP SL SR PL PR CL CR CH

Fig. 6. Confusion matrix of recognition with AGANet on the AID dataset.
Vertical axis: groundtruth category. Horizontal axis: predicted category. ”UD”
denotes undefined actions.

Besides, we find the two RNNs quickly falling into overfitting
during training, possibly due to unnecessary encoding on
over long time intervals in each layer. ST-GCN achieves an
effect close to base-AGANet (only 0.27 cAP and 1.99 APtrig

left behind). However, its structure is composed of uniform
blocks, which ignores distinction among information of dif-
ferent granularities. As a comparison, different stages of base-
AGANet focuses on patterns of different levels, leading to
better explainability. Moreover, the network structure is highly
extensible since attention modules for different purposes can
be embedded into corresponding stages in a targeted manner,
resulting in AGANet with leading accuracy.

TABLE II
RECOGNITION PERFORMANCE OF DIFFERENT METHODS FOR

SKELETON-BASED ACTION RECOGNITION ON THE AID DATASET.

model cAP APtrig Ptrig Rtrig

MTLN [30] 75.30 78.41 78.46 79.39
JCR-RNN [26] 66.95 73.79 79.08 73.60

Beyond joints [27] 76.86 82.28 83.07 83.07
ST-GCN [32] 81.63 87.56 87.72 87.41
base-AGANet 81.90 89.55 90.61 88.74

AGANet 87.50 96.00 95.08 95.71

Error analysis. As shown in Fig. 6, confusion mainly
happens between defined actions and undefined actions. We
check the corresponding data and find that these false-positive
instances have considerable similarities with defined actions,
especially when observing the skeleton data. A minimal
amount of confusion between defined actions also originates
from inter-category similarities, e.g., actions performed by
the same limbs. Overall, the proposed method has achieved
satisfying results on the given task. Extending action categories
and tasks should provide better aids in HRI and we leave it
for our future work.

D. Ablation Study

We first analyze the effects of data augmentation strategies
and attention modules in AGANet, based on skeleton data
extracted by our PAPNet. Then we analyze the influence
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Fig. 7. Examples of LSTA from AGANet on recognizing various actions. Joints receiving more attention after LSTA are marked with larger and brighter
circles.

of pose estimation quality on AGANet’s recognition perfor-
mance, using skeleton data from various methods.

Data augmentation strategies. As mentioned in Sec. III.C,
we jointly implement three data augmentation strategies to
enhance data diversity and avoid overfitting. Various com-
posites of the three proposed strategies are tested, as shown
in Table III. Each of these strategies benefits robustness and
generalization performance of the model, while combined use
of them achieves the best 8.44 and 7.38 increase in cAP and
APtrig.

TABLE III
EFFECTS OF DATA AUGMENTATION STRATEGIES IN TRAINING.

rot dist gt cAP APtrig Ptrig Rtrig

79.06 88.62 89.00 86.11
X 81.84 91.38 91.43 89.11

X X 83.02 93.44 92.30 92.74
X X 82.86 92.57 93.08 89.11

X X X 87.50 96.00 95.08 95.71

Attention modules. Benefits from LSTA and GSA modules
in our AGANet are evaluated. From Table IV we can see that
independently importing one of them improves the recognition
results (3.71 cAP and 4.23 APtrig increase by LSTA, 3.82
cAP and 4.5 APtrig increase by GSA), and combined use of
them also gives play to their respective advantages (totally 5.6
cAP and 6.45 APtrig increase).

For further proof of GSA’s effects in providing more com-
prehensive and precise semantic information, we append a
regression layer at the end of the soft mask branch in the
GSA module supervised by action categories ŝseq in the whole
sequence, as shown in Fig. 8. Such intermediate supervision
(imsp) intends to explicitly guide the module to learn to
capture global semantic information. Additional imsp shows

1
C

Loss

sseq^

sseqavg

k 5x1

k 5x1

s 2x1 k 1x1

max
C

+

RB

MB

Fig. 8. The soft mask branch of the GSA module with intermediate
supervision appended at the end.

no advantages, which proves that our GSA module can capture
global semantic information itself without explicit guidance.

TABLE IV
EFFECTS OF ATTENTION MODULES IN AGANET.

LSTA GSA imsp cAP APtrig Ptrig Rtrig

81.90 89.55 90.61 88.74
X 85.61 93.78 93.56 93.41

X 85.72 94.05 92.95 93.71
X X 87.50 96.00 95.08 95.71
X X X 86.47 96.35 95.29 95.40

We also visualize the attention distribution from the LSTA
module while estimating certain sequences to give an intuitive
impression of LSTA’s effects. As shown in Fig. 7, LSTA
successfully conducts the model to focus on the main body
parts involved in each action, e.g., left arm for RL/PL, right
arm for SR/CR, and two arms for MP/CH. Attention on these
critical parts rises at the start of actions, maintains during the
process and weakens at the end of actions. Such a mechanism
keeps in line with human intuition for perceiving others’
actions in interaction.

Sensitivity of AGANet to pose results. Besides the PAP-
Net, we adopt two versions of CPN [23] and OpenPose [20]
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to provide skeleton data. As Table V shows, there is no
significant gap among recognition performance on different
pose estimation results. The analysis proves the robustness of
AGANet to estimation errors from them.

TABLE V
RECOGNITION PERFORMANCE OF AGANET BASED ON DIFFERENT

ESTIMATED POSE RESULTS.

framework cAP APtrig Ptrig Rtrig

CPN v1 + AGANet 88.47 96.56 96.02 94.39
CPN v2 + AGANet 88.71 95.59 94.44 95.38

OpenPose v1 + AGANet 86.13 95.81 95.93 93.40
OpenPose v2 + AGANet 87.01 93.33 94.31 93.08

PAPNet + AGANet 87.50 96.00 95.08 95.71

IV. CONCLUSION

In this work, we propose an attention-oriented multi-level
network framework specifically for the action recognition task
in HRI scenes. Compact architectures are designed at different
levels for real-time interaction. Furthermore, Pre-Attention
employed in the pose estimation level manages to focus on the
interactor and ensure the efficiency on mobile robot platforms.
LSTA and GSA modules incorporated in the action recognition
level helps to capture important local structures and encode
global semantic information. Given promising performance
on the newly constructed AID dataset, we believe that our
approach can be extended to more complicated recognition
tasks in HRI and facilitate further research in this field.
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